
16 CROSSTALK The Journal of Defense Software Engineering August 2006

Similar to the Java Runtime Environ-
ment, Microsoft’s .NET Framework [1,

2] is attractive to software developers as it
provides a large collection of precompiled
classes, including security classes that
allow dynamic loading of modules. Just as
the Java 2 Micro Edition (J2ME) allows
Java programs to be run on embedded and
mobile devices, the .NET Compact
Framework enables .NET applications to
be run on these devices. Unlike Java,
.NET had a goal of interfacing with lega-
cy Windows code. Therefore, Microsoft
provided mechanisms in .NET for easily
combining legacy component object
model (COM) objects and Win32 Stdcall
dynamically linked libraries (DLLs) with
new .NET code.

Microsoft developed a flagship lan-
guage for the .NET Framework: C#. C# is
an object-oriented language with a syntax
and semantics that are very similar to Java.
While C# and Java resolve many of the
really bad problems with C and C++ (in
particular, buffer overflow vulnerabilities,
= versus ==, single character errors, etc.),
they still fail to meet many of the almost
30 year old Department of Defense
(DoD) Steelman requirements [3] for pro-
gramming languages that have always been
met in Ada. For example, while the latest
versions of C# and Java have finally added
generics, both languages still fail to provide
subtypes to properly model scalar values,
and proper enumeration types. C# does
have an enum type, which at first glance
appears to be a proper enumeration type,
but does not provide successor or prede-
cessor functions. Additionally, C# and Java
still require arrays to be indexed with inte-
gers starting at zero (Ada allows the start-
ing index to be specified or allows indexing
an array with an enumeration type, such as
colors).

Ada, on the other hand, has suffered
from a lack of available components
(although Ada 2005 does add a new con-

tainer library). Only a few of the widely
used libraries support Ada. Additionally,
compiler vendors have been slow to pro-
vide compilers for new platforms such as
embedded and mobile devices. As a result,
despite its engineering superiority, Ada is
often not the best tool to get the job done.

The A# project1 seeks to have the best
of both worlds. By providing an open-
source compilation environment for Ada
on the .NET Framework, A# gives soft-
ware developers the opportunity to lever-
age the large amount of reusable .NET
classes while also being able to write code
in a language that strongly supports good
software engineering practices.

Compiling for .NET
One of the key design goals for .NET was
supporting multiple different program-
ming languages. Microsoft provides tech-
nical support to language developers and
has published a list of 27 languages that
compile to .NET (not including the four
distributed with Visual Studio) [4]. To
make it easier for compiler developers to
create compilers for the .NET
Framework, Microsoft provides the .NET
Common Intermediate Language (CIL).
The .NET CIL can be viewed as a high-
level assembly language, which directly
supports object-oriented features such as
inheritance, dispatching, and interfaces.
Since this intermediate language is object-
oriented, compiling an object-oriented
language to the .NET CIL is much simpler
than compiling to Intel assembly language.

The .NET CIL bears a strong resem-
blance to Java bytecode. Therefore,
JGNAT [5] (Gnu Ada Translator [GNAT]
for the Java Virtual Machine) – an open
source Ada compiler that compiled from
Ada to Java bytecode – was used as a start-
ing point for the compiler. We modified
JGNAT to emit CIL instead of Java byte-
code. The resulting compiler is called
MGNAT (GNAT for Microsoft .NET).

Also, we rewrote the Ada standard library
packages to call .NET routines instead of
those from the Java platform. JGNAT is
no longer maintained by Ada Core
Technologies, so it does not contain any
Ada 2005 features. To support Ada 2005,
MGNAT reuses code from the latest
GNAT compiler (with some modifica-
tions) [6]. GNAT is an open-source Ada
2005 compiler distributed under the Free
Software Foundation General Public
License. GNAT runs on many different
platforms, but not .NET.

To make using the compiler easier, we
have modified Ada Graphical Integrated
Development Environment (AdaGIDE)
[7], a freely available development envi-
ronment for Ada, so that the A# compil-
er, MGNAT, can be selected simply by
pushing the target button and then select-
ing the .NET radio button.

Using .NET Classes in Ada
Whenever you mix programming lan-
guages, it is necessary to have a language
binding that enables communication
among components written in different
languages. These bindings may be either
written by hand or automatically generat-
ed. Win32Ada [8] is an example of a
handwritten binding to the Microsoft
Win32 Application Program Interface
(API). The problem with manually writing
such a binding is that it is incredibly
tedious and quickly becomes stale. As the
Microsoft Win32 API developed,
Win32Ada was not kept up to date.

A# provides the MSIL2Ada (Micro-
soft .NET Common Intermediate Lan-
guage to Ada) tool, which automatically
generates bindings. MSIL2Ada is written
in a combination of Ada and C# and uses
the .NET reflection classes to enumerate
all of the classes, methods, and attributes
of a .NET DLL, then generates corre-
sponding Ada specifications.

Consider the following C# class:

Ada 2005 on .NET and Mobile and Embedded Devices

Ada is well known for supporting good software engineering practices and for interfacing cleanly with other languages;
these features have only gotten better with Ada 2005. The A# project is an open-source implementation of Ada
2005 for Microsoft’s .NET Framework. Using A#, programmers can combine Ada code with reusable .NET com-
ponents, including modules written in C#, as well as legacy component object model components and Win32
Dynamically Linked Libraries. This allows leveraging both the software engineering advantages of Ada and the
large amount of reusable libraries written for .NET. Additionally, A# targets portable digital assistants and other
mobile and embedded devices.

Dr. Martin C. Carlisle
U.S. Air Force Academy

August 2006 www.stsc.hill.af.mil 17

namespace crosstalk {
public class Class1:Superclass,
MyInterface {

public color my_color;
private string s;
public Class1(string x) {…}
public void package() {…}
public static color get_color() {…}
private int get_value() {…}

}
}

MSIL2Ada parses the compiled DLL con-
taining this class and generates the follow-
ing Ada specification (corresponding to
only public attributes and methods):

with crosstalk.Superclass;
with crosstalk.MyInterface;
with crosstalk.color;
limited with MSSyst.String;
package crosstalk.Class1 is

type Typ;
type Ref is access all Typ’Class;
type Typ is new crosstalk.Superclass.Typ
and crosstalk.MyInterface.Typ
with record

my_color : crosstalk.color.Valuetype;
pragma Import(MSIL,my_color,
”my_color”);

end record;
function new_Class1(This : Ref := null;

x : access MSSyst.String.Typ)
return Ref;

function get_color returncrosstalk.
color.Valuetype;
procedure package_k(This : access Typ);

private
pragma Convention(MSIL,Typ);
pragma MSIL_Constructor(new_Class1);
pragma Import(MSIL,get_color,”get_color”);
pragma Import(MSIL,package_k,
”package”);

end crosstalk.Class1;
pragma Import(MSIL,crosstalk.Class1,”.ver
1:0:2161:15913”,“[crosstalk]crosstalk.Class1”);

In the Ada code above, the compiler
directive pragma Import specifies that an
item is being imported from a different
programming language. Several new Ada
2005 features are used in this binding,
making it easier to read than similar bind-
ings written in Ada 95. First, Ada 2005
adds interfaces, which are styled after
those in Java and C#. In the definition of
Class1, the and shows how to specify that
a tagged type implements an interface.
Oddly, in Ada 2005, only child classes are
allowed to implement interfaces. This
poses no problems in mapping the C#
types as all types in C# are derived from
System.Object (which does not implement
any interfaces).

Second, the new limited with clause in
combination with new anonymous access
types makes it easy to map mutually
dependent C# classes. A limited with clause
is added for each dependent class (as is
seen for MSSyst.String).

Reserved words in C# and Ada differ,
and C# is case-sensitive while Ada is not, so
the pragma Import is used to map C# names
to Ada names. Note that since package is a
keyword in Ada, _k is added to its Ada iden-
tifier. The namespace System from C# is
renamed to MSSyst for similar reasons.

A# was the first Ada compiler to
introduce the object.method syntax,
which has now become part of the Ada
2005 standard. This means that program-
mers using both C# and A# can use the
same object-oriented syntax for method
calls in both languages. In Ada 95, a call to
the package_k method would have
appeared as:

crosstalk.Class1.package_k(This=>
Class1_ Ptr);

In A# and Ada 2005, this can now be
written as:

Class1_Ptr.package_k;

This is not only shorter, but simpler, as
the programmer does not need to worry
about what package a class was declared in
to call a method on it. This is particularly
helpful for non-dispatching methods (those
declared with ‘Class), as they may be in
packages where superclasses were declared.

On the Java Virtual Machine, there
were only base types (such as integer and
float) and class references. The Microsoft
.NET platform allows for the creation of
types that stored on the stack are passed
by value (hence the name Valuetype)
instead of by heap reference. To resolve
this, we have added the reserved word
Valuetype. The get_color method returns
something of type crosstalk.color.Value-type.
If a type is so named, then the compiler
will generate code for it according to the
.NET calling conventions for Valuetypes.
Since there are no pointers for these types,
a full with is needed for the crosstalk.color
package instead of the limited with used
for other dependencies.

The C# enum is another example of a
Valuetype. Although, as previously men-
tioned, it differs from an Ada enumeration
type. A# currently maps it to an Ada enu-
meration. However, since C# enum types
do not support determining a successor or
predecessor, these mapped types cannot
use Ada enumeration attributes (such as
‘Pos or ‘Succ). Unlike Ada enumeration

types, .NET enumerations can have multi-
ple names corresponding to the same
value. In these cases, a named constant is
declared for each additional name. In cer-
tain cases, enum values can be combined
to create values that have no name (e.g., in
the FontStyle enumeration, Bold and Italic
are listed – they can be added together to
create a Bold Italic style, although this is
not listed in the enumeration). When the
type allows this, we provide a function (+)
for performing such combinations. The
C# enum differs so significantly from an
Ada enumeration that it would be more
accurately mapped to a named integer
type (e.g. type FontStyle is new Integer). This
more precise mapping may be accom-
plished in a later version.

Another key difference between C#
and Ada data types is the use of strings. In
C#, strings are stored in 16-bit unicode,
while the Ada basic string is eight-bit
International Standardization for Organ-
ization (ISO) Latin-1. Since it is expected
that strings will be commonly passed
between the languages, A# provides a
unary (+) operator to perform the follow-
ing conversion.

Csharp_String : MSSyst.String.Ref := +
”hello world”;

When calling a C# method that takes a
string as a parameter, the compiler will
automatically insert the conversion:

C1 : crosstalk.Class1.Ref :=new_Class1
(x => “hello world”);

Extending a .NET class in Ada
A peculiarity that is exposed by the map-
ping to Ada is the appearance of the this
parameter in the constructor for Class1. All
C# constructors are required, as their first
act, to call a parent constructor. Generally,
the no-argument constructor of the parent
is used; however, this can be changed in C#
by using base, as the following:

public Class1(string x) : base(x)

This indicates that parameter x should be
passed to the superclass constructor that
takes a string as a parameter. When
extending a .NET class in Ada, the call to
the constructor method is done explicitly
in the variable declaration:

function New_MenuItem(This : Ref := null)
return Ref is

Super : MenuItem.Ref :=
MenuItem.New_MenuItem

(MenuItem.Ref(This));
begin

Ada 2005 on .NET and Mobile and Embedded Devices

Ada 2005

18 CROSSTALK The Journal of Defense Software Engineering July 2006

return This;
end New_MenuItem;

This code seems a bit peculiar, as Super
appears to be an unused local variable, and
the function looks like it will return null;
however, the compiler generates the cor-
rect code that allocates a new object and
calls the parent constructor. The Ada child
class also needs to be marked with the
convention MSIL (Microsoft .NET CIL)
and have its constructor marked as an
MSIL constructor (as shown in the pack-
age crosstalk.Class1).

Calling A# Code From C#
Although a free graphical user interface
(GUI) builder tool, Rapid [9], can be used
to develop user interfaces for the .NET
framework in Ada, Visual Studio [10] pro-
vides a much more extensive GUI builder.
Consequently, it can be advantageous to
use Visual Studio to develop the user
interface and then write the rest of the
code in Ada.

In this case, you create a DLL from the
Ada code instead of an executable. A#
comes with mgnatmake, a tool which
automatically detects dependencies be-
tween Ada source files, performs the re-
quired compilations, and combines the
results. By default, mgnatmake generates
executables, but it can be instructed to
generate DLLs instead:

mgnatmake msil2ada -o msil2ada_output.
dll- z -largs /DLL

These arguments tell mgnatmake to com-
bine all of the dependencies of the project
MSIL2Ada into an output file named
msil2ada_output.dll (-o), with no main
program (-z) and to create it as a DLL
instead of an executable (-largs/DLL).

In Visual Studio, you can simply add a
reference to this DLL, and the Intellisense
will automatically suggest the Ada meth-
ods (Visual Studio automatically creates
the appropriate language binding).
Because .NET does not allow a name-
space and a class to have the same name,
it was necessary to add _pkg to the end of
the final Ada package name, so
P1.P2.P3.Put would be referenced as
p1.p2.p3_pkg.put. Also, it is necessary to
call the initialization routine generated by
the binder explicitly from the C# code as:

ada_msil2ada_output_pkg.adainit();

The binder output has an additional ada_
prefix on the package name (which has
been given the _pkg suffix as previously
described).

Uses of A#, Embedded and
Mobile Devices, and More
Interoperability
The most widely used program imple-
mented using A# is RAPTOR [11] (Rapid
Algorithmic Prototyping Tool for
Ordered Reasoning). RAPTOR is an
open-source visual programming environ-
ment designed for use in an introductory
computer science class. RAPTOR’s visual
programming model is based on flow-
charting. RAPTOR is being used in an
increasing number of universities across
the United States and Canada with
inquiries from as far away as Japan.

RAPTOR is an interesting use of the
A# technology, as it incorporates C# and
A# code, as well as a legacy C++ graphics
library. Figure 1 shows the interrelation
between the various software components
in RAPTOR.

The C#, C++, and Ada code are writ-

ten by hand; the interoperability DLL is
generated automatically by Visual Studio
when a reference to the COM object is
added to the project.

A# is also being used on some defense
projects, in particular to port Ada applica-
tions to embedded and mobile devices
using the .NET Compact Framework. It is
a trivial matter to target an embedded or
mobile device using A#. Simply adding
the-compact flag to both MSIL2Ada and
MGNAT instructs these tools to generate
code suitable for use with the .NET
Compact Framework. Two of the plat-
forms available with the compact frame-
work are the Pocket PC and the
Smartphone 2003.

A final, recently added piece of inter-
operability is the ability to interface with
legacy Win32 DLLs. In C#, you would
add the following code to import from a
Win32 DLL:

[DllImport(“adagraph2001.dll”)]
public static extern int

CreateGraphWindow(int size);

In A#, you instead do the following:

function Open_Graph_Window(Size : in
Integer)
return Integer;

pragma Export(Stdcall,Open_Graph_Window,
“[adagraph2001.dll]CreateGraph
Window”);

This also provides a function body (which
will be ignored). While it is irregular to use
a pragma Export to import from another
file, this is done because it is necessary to
generate code in addition to merely a call,
and it was simpler to generate a body on a
function marked for export.

Conclusions and Future Work
A# has demonstrated the viability and
usefulness of combining Ada with other
.NET languages, as well as providing
interfacing to legacy Win32 and COM
libraries. This allows developers to gain
the advantages of Ada’s strong typing
while also leveraging the vast number of
libraries available with .NET and the GUI
builder from Visual Studio. Furthermore,
A# provides an easy mechanism for get-
ting Ada code running on embedded and
mobile devices via the .NET compact
framework (e.g. Windows CE, Pocket PC,
Smartphone 2003).

There are significant areas for future
work. First, we are currently working to
fully integrate Ada into Visual Studio 2005.
Visual Studio 2005 now allows extensions
to be written in .NET languages (Visual

C COM

()DLL

C# GUI

()

Ada Code

()

C COMC++ COMC++ COM

(dll)(.dll)(.dll)DLDLDLLLL

C# GUIC# GUIC# GUI

()(.exe)(.exe)

Ad C dAda CodeAda Code

(dll)(.dll)(.dll)

Figure 1: Interoperability Demonstrated in RAPTOR

Ada 2005 on .NET and Mobile and Embedded Devices

August 2006 www.stsc.hill.af.mil 19

Studio 2003 required the extension to be
written using C++ COM objects), so the
integration code is also being written in a
combination of A# and C#.

Second, version 2 of the .NET frame-
work adds generics. Using the generics
built into the framework to implement
Ada generics might reduce code size and
make the genericity of Ada constructs vis-
ible to other .NET languages. This will be
a non-trivial effort as the generic model in
.NET is not as fully featured as that in Ada
(it allows only types as generic parame-
ters). Also, MSIL2Ada and MGNAT need
to be updated to allow Ada programmers
to use generic classes written in C#.

Finally, while A# has been maintained as
an academic project (even though it is in use
by defense contractors), it would be prefer-
able to perform technology transfer to the
private sector, which has greater resources
to develop and maintain this product.u

References
1. “Introduction to the .NET Frame-

work.” DevHood. 7 Mar. 2006. <www.
devhood.com/training_modules/
dist-a/Intro.NET/?module_id=1>.

2. “Technology Overview: What Is .NET?”
Microsoft. 7 Mar. 2006 <http://msdn.
microsoft.com/netframework/tech
nologyinfo/overview/default.aspx>.

3. U.S. Department of Defense. Require-
ments for High Order Computer Pro-
gramming Languages. “STEELMAN.”

1978. 29 Nov. 2005 <www.adahome.
com/History/Steel man/intro.htm>.

4. “About Languages: Welcome to the
.NET Language Developers Group.”
Gotdotnet.com. Oct. 2004 <www.got
dotnet.com/team/lang/> Microsoft.
(29 Nov. 2005).

5. Comar, Cyrille, Gary Dismukes, and
Franco Gasperoni. “Targeting GNAT
to the Java Virtual Machine.” Proc. of
the Tri-Ada 97 Conference. St Louis,
Mo., 9 Nov. 1997.

6. “The Libre Site for Free Software De-
velopers.” Ada Core Technologies. 29
Nov. 2005 <http://libre.adacore. com>.

7. Carlisle, Martin. “AdaGIDE Home
Page.” 29 Nov. 2005 <http://ada
gide.martincarlisle.com>.

8. Taft, S. Tucker. “Win32Ada.” 22 June
1999 Averstar and Labtek (29 Nov.
2005) <http://archive.adaic.com/tools/
bindings/win32ada/win32 ada.html>.

9. Carlisle, Martin. “RAPID Home
Page.” 29 Nov. 2005 <http://rapid.
martincarlisle.com>.

10. “Microsoft Visual Studio Developer
Center.” Microsoft. 29 Nov. 2005
<http://msdn.microsoft .com/v
studio/>.

11. Carlisle, Martin. “RAPTOR Home
Page.” 1 Dec. 2005 <http://raptor.
martincarlisle.com>.

Note
1. See <http://asharp.martincarlisle.com>

for more information on the A# pro-
ject. Developers can download A# for
free.

About the Author

Martin C. Carlisle, Ph.D.,
is a professor of comput-
er science at the U.S. Air
Force Academy in Colo-
rado Springs, Co. His
research interests include

programming languages, computer secu-
rity, and computer science education.
Carlisle is the primary author of several
open-source software products used
worldwide, including AdaGIDE, RAP-
TOR, and A#. He has a Bachelor of
Science in mathematics and computer
science from the University of Delaware
and a Master of Arts and Doctorate in
computer science from Princeton
University.

Department of Computer Science
2354 Fairchild DR
STE 6G101
U.S. Air Force Academy
Colorado Springs, CO 80840-6234
Phone: (719) 333-3590
Fax: (719) 333-3338
E-mail: carlislem@acm.org

Dear CrossTalk Editor,
Kevin Stamey’s sponsor note, “Why Do Projects Fail?” in
CrossTalk’s June 2006 issue was encouraging. Software peo-
ple are finally starting to realize that systems engineering is nec-
essary to their success. What Stamey observes is mostly correct.
But he does omit several items, some of which were touched on
by the articles in the June issue.

He omits Configuration Management (CM). Without it you
are doomed to fail. Who hasn’t been burned by some cowboy
coder who decided to make an improvement without telling any-
one, let alone obtaining authorization, delaying testing and caus-
ing previously working code modules to fail unexpectedly. Even
finding the latest version of a document challenges most orga-
nizations.

But CM is really a subset of communication and coordina-
tion. When I worked in acquisition, I included a glossary of
every term used so there would be no mix-ups, as in Alan Jost’s
article. Anyone who does not define their terminology is ask-
ing for protests, screw-ups, and lawsuits. Why including a glos-
sary isn’t standard practice is a mystery. It should continue into
the development work by instantiating a project glossary that
goes to the level of detail of the units used in calculations.

As Capers Jones alludes to in his article, lack of adequate
resources is a root cause of failure. Lack of ethics and moral

courage on the part of management and engineering exacer-
bates the problem, as does outside influences such as political
pressure and executives who want to make the numbers to get
their bonus; congress may cancel funding if progress is not
shown. With such a situation, misleading status reports are sure
to result, making the situation even more critical later on.

Tim Perkins has the best high-level diagram that I have seen.
I infer that it puts too much faith in CMMI-type answers, but it
captures the paths to the real root causes. However, Item 150 is
a constraint that must be considered in the Systems
Architecture; it is not a valid cause of project failure.

Between large, complex, unprecedented systems and small
routine, incremental improvements to COTS, there is a wide
range of processes that should be used. Processes must be tai-
lored to fit the situation. This requires that competent people
be used. Ones who understand, not merely check off boxes on
some list. They must truly understand the essence of what they
are doing and not just chant the black magic incantations they
were promulgated by some professor.

William Adams, PE, Ph.D.
<williamadams@ieee.org>

LETTER TO THE EDITOR

